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On brittle crack advance by

double kink nucleation

l.-H. LINY, J. P. HIRTH

Metallurgical Engineering Department, Ohio State University, Columbus,

Ohio 43210, USA

A Mode | brittle crack is simulated by a pile-up of edge dislocations. The leading dis-
location is a perfect lattice dislocation and the remaining dislocations are sub-dislocations
with fractional Burgers vectors. A double kink at the crack-tip is represented by a set of
double jogs on the dislocations. The equilibrium jog array is determined for several
examples. The calculations give results for the activation energy for double-kink forma-
tion and for the elastic field of double kinks. The results are applicable to theoretical
estimates of crack-growth rates and in providing boundary conditions for atomic

simulations.

1. Introduction

Thomson, Hsieh and Rana [1] and Hsieh and
Thomson [2] were the first to investigate “lattice
trapping” which can be defined as a phenomenon
related to a barrier to atomic lattice healing or
opening at the crack-tip of a brittle solid. Such
an energy barrier to the propagation of a crack
under an applied load arises from the effect of
the discreteness of the atomic structures. The
behaviour of a crack-tip is therefore analogous
to that of a dislocation, where the Peierls—Nabarro
barrier [3] can provide a significant resistance to
the motion of a dislocation. Gehlen and Kanninen
[4] were the first to investigate the atomic crack
model for a-iron, considering a three-dimensional
configuration containing a kink or off-set in an
otherwise straight crack-tip. They showed that the
crack-tip containing the kink was much more
mobile than a straight crack-tip. The mobility of
kinked crack-tips in atomic models has since been
examined by others [4—7]. Moreover, kink models
of crack growth have been developed by Hseih

and Thomson [2], Lawn and Wilshaw [8], Lawn

191, Sinclair [6], and Krausz [10].

These studies suffice to show that brittle crack
propagation in the lattice-trapping region proceeds
by the nucleation and subsequent motion of kinks
at the crack-tip. However, while they provide

results for the kink mobility, they do not provide
data on the energetics of double-kink nucleation,
primarily because of the lack of a suitable elastic
boundary condition on the atomic region. As a
consequence, all of the models involve simplifying
approximations for double-kink nucleation energy:
either that of a constant kink-formation energy
[8—10], or that of a doublekink interaction
energy which varies linearly with strain-energy
release rate [6]. The results of Sinclair {6], for
a model of covalently-bonded silicon indicate that
the kink configuration is localized, implying a
short-range double-kink interaction energy. How-
ever, it was not possible in his work to deduce the
form of the interaction. For less strongly bonded
metals, the degree of localization of the kink
configuration is not known,

Following the suggestion of Friedel [11] a
planar tensile crack with a straight tip can be
represented by a continuous distribution of
infinitesimal edge dislocations in a climb—pile-up
array. The behaviour of such cleavage or crack
dislocations is reviewed by Smith [12]. The field
of the continuous distribution is equivalent to the
continuum elastic result for such a crack, so it is
evident that the planar crack with a circular tip
discussed by Leibfried [13] in an elastic approach
can be represented by a continuous distribution of
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infinitesimal circular dislocations. In the present
work, following an earlier suggestion [14], the
above models are extended to describe the elastic
field of a crack with a straight tip except for the
presence of a double-kink, equivalent to a double-
jog in the crack dislocations. The crack-tip, which
experiences the lattice-trapping barrier and where
the nascent free surface is created, is represented
by a discrete crack dislocation, with its Burgers
vector to be determined from a two-dimensional
atomic simulation, and the remainder of the crack
is represented by infinitesimal dislocations. The
elastic field of the region adjoining the double-kink
can then be represented in terms of a set of double-
jogs on the continuous infinitesimal dislocations
(an analogue would be the circular dislocations of
Leibfried which could be represented, except very
near the dislocation, by a set of jogs where the
loop deviated from a low-index direction).

In practice, the treatment of an infinitesimal
set of doublejogs is impractical from the view-
point of numerical computation time. Thus, two
approximate models of the double-kinked crack
are adopted.

In the first, a double-jog is permitted on the
leading dislocation, but the other infinitesimal
dislocations are assumed to remain straight.

In the second the remaining continuous dis-
location distribution is transformed into discrete
sub-dislocations with Burgers vector magnitude
b/m, where m is an integer greater than or equal
to unity and m = 1 corresponds to a set of perfect
lattice dislocations. An optimum value of m is
selected for a given problem, a larger value giving
a better approximation of the elastic field but
requiring a longer calculation. Although the first
approach is simpler, the second method is more
accurate, giving lower doublekink activation
energies at the crack-tip because of the double-
kink sets formed on the discrete sub-dislocations.
A comparison of the two models delineates the
regimé where the simpler model can successfully
be used as an approximation.

In terms of the results, a specific mechanism
of double-kink nucleation can be added to the
kink models for crack growth [6—10] in the
trapped region. For a specific crack-tip configur-
ation, the results also provide three-dimensional
elastic solutions which can be used in atomic
calculations. The free parameters in the model,
the Burgers vector of the lead dislocation and the
width of the jogs in it, can be determined from a
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two-dimensional atomic sumulation and applied
to three-dimensional problems. Of course, with
m = 1, the results also provide a solution for the
advance of a climb—pile-up array of real dislo-
cations by double-jog nucleation and growth.

2. Double-kink nucleation in a continuum
dislocation model of the crack

Consider an infinite isotropic elastic medium
subjected to a uniform applied tensile stress
0 =0y, at y =co. The medium contains a pre-
existing Mode 1 planar crack of extent ¢ in the
x-direction, lying normal to the plane y = 0, and
with straight crack-tips of infinite extent lying
parallel to the z-direction. The linear elastic crack
field, represented as the limit at a large aspect-
ratio of the result of Inglis [15] for a crack of
elliptical cross-section, is reproduced exactly by
a continuous distribution of infinitesimal edge
dislocations in a clumb—pile-up array, as discussed,
for example, in [12, 16]. In such a model, the
energy released per unit depth, L ,in the z-direction
in forming the crack is

W/L = nao’a/8u, (D

where a=(1—v) for plane-strain and a=
(1 +»)™! for plane stress, v is Poisson’s ratio and
u is the shear modulus. The force per unit length,
F/L, on the leading dislocation in the pile-up is
then equivalent to the strain-energy release rate,
G, and is related to the stress-intensity factor,
Ki = o(na/2)"? as follows

FIL = dW/L)da = G = KPaj2u

2

The critical value for crack propagation, the frac-
ture criterion, is

= qaolaldu.

Gc = 27 + Girr: (3)

where 7 is the surface-energy per unit area of the
created surfaces and Gy, represents other energy
dissipated for a crack advanced by a distance da.
With Gy, =0, the advance da is a reversible
thermodynamic process, and Equation 3 reduces
to the Griffith result [17]. With Gj, arising from
a plastic work of dissipation, Equation 3 corre-
sponds to the Irwin—-Orowan generalization {18,
19] of the Griffith result to the case of contained
ductile fracture. Even in the absence of plastic
flow, irreversible effects in “bond-breaking” in
the crack tip can contribute to Gy,. For an



actual crack, non-linear elastic effects should be
important at the crack-tip on a size scale of the
order of the atomic spacing, so that the linear-
elastic continuous dislocation distribution (or
" the continuous elastic-crack solution) does not
apply. Also, the period of the oscillation in the
lattice-trapping barrier is the atomic spacing, #,
in the x-direction. Thus, it is convenient to replace
the dislocation distribution at the crack-tip by an
imaginary discrete lattice dislocation. A jog in
this dislocation then is equivalent to a kink in
the crack-tip, as represented in Fig. 1. Any un-
certainties in this description are non-linear in
nature and localized to the near crack-tip region:
the long-range elastic field of the configuration is
the correct one. Because of the short-range nature
of the atomic reactions, the non-linear elastic
effects on the crack rapidly diminish as the distance
from the crack-tip increases. Consequently,
the remainder of the crack can continue to be
represented by a continuous distribution of
infinitesimal dislocations.

For the model of Fig. 1, the activation energy
of nucleating a double-kink in the crack tip is
determined by minimizing the total elastic energy
(i.e., the Gibbs free-energy of the system), which
is achieved by creating a double-jog of length 2z,
in the first dislocation and supplying the forma-
tion energy of two jogs. The formation energy
consists of a generalized surface energy [ Gohdz

an energy change equal to the work done on the
system in the amount [ %! Ghdz. Thejog-formation
energy, Wy, of a single jog of lattice length, 4, and
Burgers vector magnitude, b, is (see Equation 899
in[16])

W9 = ub*n/an(l —v), h=w (4)

and

Wy = ub*h*l4mw(l —v), h #w, (5)

where w is the jog-width (see Equation 8-69 in
[16]). Unlike a true lattice dislocation which
always has abrupt jogs with w =~ A, the fictitious
crack dislocations can widen, their width depend-
ing on the magnitude of the lattice-trapping
barrier. The actual width can be determined by
two-dimensional atomic calculations such as those
of Sinclair [6]. Since b is also to be determined
from atomic calculations, the simpler form in
Equations 4 and 5 are retained in most of the
remaining calculations, equivalent to the assump-
tion wah. We do include example cases where
h#w. Of importance for later discussion, the
configuration of the crack depends only on the
jog—jog interaction energy and is independent
of w. Thus, all the results can be easily modified
if a value of w is known.

The jog—jog interaction energy, Wy, is (see
Equation 8-100 in [16])

and a jog—jog interaction energy, accompanied by Wis = — Wsh/4z,. (6)
Z
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| ation at the tip of crack repre-
sented by dislocation arrays.
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The total energy of the double-jog at the crack
tip is

W = 2W,; — Wh/dz, + jz‘ (G, — G)hdz.
_z!
()

The activation energy is found from oW/oz, = 0.
The maximum value of W and its corresponding
zy-value for a given value of G are, respectively,
W* and z§ where

W* = 2W9 (hjw —hjdz?) ®)
and 0 1/2
* WJ
"= [S(G—Gc(zi‘))} O

where G (z}) is the value of G, evaluated at
z,=z;. Equations8 and 9 provide a simple
solution for the activation energy of a critical-
sized double-kink nucleus at the crack-tip, which
is required to complete the theories of motion of
a kink-pair in the lattice-trapping region. This
result is the self-consistent one which should be
used with a dislocation pile-up representation of
a crack. In the next section a new method is
presented for the determination of the equili-
brium configuration of discrete dislocations in
the pile-up. This method makes it possible to
investigate the effect of double jogs on the crack
growth. In connection with the previous discussion
of w, Equations 8 and 9 show that, while W*
scales with w, z§ is independent of w, anticipating
the more general result with a complete jog set.

3. Double-kink nucleation in a discrete
dislocation model

An alternative model to the continuum dislo-
cation model which gives an improved description
of the crack-tip region retains the discrete dis-
location at the crack tip, but replaces the remain-
ing continuous dislocation distribution by discrete
sub-dislocations with Burgers vectors of magnitude
b/m, where m is an integer greater than or equal
to unity and m = 1 corresponds to a set of perfect
lattice dislocations. Thus, the model of the crack
is a discrete dislocation at the crack tip with sub-
dislocations comprising the remainder of the
crack. Independent of the actual nature of atomic
forces at the crack tip, this mode] gives a solution
for the elastic field which is correct at distances
large compared to the interdislocation spacing
according to the principle of St.Venant. It
accurately represents the local relaxations of the
crack surfaces near the double-kink, a feature
not included in the simple model of Section 2. The
approximations of actual non-linear behaviour in
this model are embodied in the replacement of
the actual displacement distribution within a few
atomic distances of the crack-tip by those of the
leading discrete dislocation.

With a net driving force (G # G.) for crack
growth or shrinkage, the leading discrete dislo-
cation at the tip sustains the lattice-trapping force,
as indicated in Fig. 2. At constrained equilibrium
for the crack configuration, this force is balanced
by the pile-up stresses produced by the sub-
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| a I Figure 2 Discrete dislocation represen-
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dislocations. The sub-dislocations are in a con-
strained equilibrium distribution with the applied
force oy,b/m balanced by dislocation interaction
forces. This pile-up distribution is determined
from standard pile-up theory. The particular
method is a new one, presented in the Appendix,
in which discrete dislocation positions are initially
estimated for continuous infinitesimal dislo-
cation theory and the exact positions are then
determined from perturbation theory in a series
expansion approach.

A doublejog of length 2z; is then created and
constrained at position z; on the leading dislo-
cation. The equilibrium configuration of a set
of doublejogs on the discrete sub-dislocations is
then determined. Finally, z, is varied, together
with the configuration of the jogs on the sub-
dislocations, to compute the activation energy
for the jog pair on the leading dislocation.

A vpossible configuration is shown in Fig. 3.
The doublejog configuration can be achieved by
superposing a rectangular dislocation loop upon
a straight dislocation line, see Fig.4. A loop
defined by co-ordinates x; and zj, as in Fig. 4,
produces the stress component g,,,, which contri-
butes to the interaction force between loops, at a
point xy,, zy. 0y, is determined (from Equations
5-45in [16]) to be

Wi;(G) | —La Ly

Oyy(f, k) = -
w hb | XaZs XaZp
y
/
/
/
/
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/
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Figure 3 A tensile crack and double-jog band.
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Figure 4 Creation of a jog-pair by superposition of a dis-
focation loop (solid line) on a straight dislocation line
(dashed line). Arrows indicate the sense vector of the
dislocation: ¢ = 4, forj = 1;and ¢ = h/m, forj > 2.

L¢ Lp
XpZy XpZgp|’

where the jog formation energy of a single jog of
length % is by extension of Equation 4

Wy(j) = pb*h*/4mm*w(l —v);

—+

-+

(10)

Il

i=2
(11)

ub*h* [Amw(l —v); 1
(12)

j =

W;(7)

and the other factors are reduced co-ordinates

XA == x,-—xk, XB = xj+q—xk;

Zy = zj —zy; (13)
Zy = zj+zy, La = (XX +Z3)"*;

Ly = (X3 +Z%H"Y*; and (14)
Lo = (X& +ZH)Y and

Lp = (X3 +Z3)", (15)

where g =h for j=1 and q¢ =h/m for j>2.
Given the above stress field, the interaction energy
between loops, positioned as in Fig. 5, determined
by the method of Brown [20], is

. b 2k xp+ h/m ) , ,
Wint(]vk) = ;; . '[ Oyy(/, k) dxk de

v =Zp Xk
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2W;5()

= {2(LA —LB _LC + LD

mh

+Lg—Lg—Lg+Lu)

Xg+ L¢
+ —_—
XB In (XB T LD\)
— (Xg — h/m) In (-——————)
s/ Xg+ Ly —hjm
—Xgln (&%LL;A_)
X, +LG—h/m)
+ X5 —h/m) In| ————————
(Xa = hjm) (XA+LH—h/m
7 In (Zg+ Lg)(Zg+ Lyp)
P |@s+ Lu)Zs + L)
+ 27, I (Za + Le)Zpa+ Le)
|(Za + LEXZA + Lp)
+ 2z, In M k=2
| (Zp —h/m)Xa (16)
Here,
Lg = [Z§ + Xg —h/m) 1Y%, (17)
Ly = [Z§ + (Xg —h/m)*1'?,  (18)
Lg = [Z} + (X —h/m)*]"? (19)
and

Ly = [ZE + (Xa —h/m)*]Y2.  (20)
Since Win(7, k) = Wini(k,/), Equation 11 is the

(x;+¢,-2) (X/~+q’2/-
T"'/ loop,
T gz 0, 2
A
e+ m,-2,) (Xt 7,2}
loop,
(X, =2, %, 2,)

complete expression for determining the inter-
action energy between loops. The absolute value
of Win(j, k) in Equation 11 is a monotonically
increasing function of z;, z;, &, and #/m and a
decreasing function of the separation distance, X 5.
Since W;n, is negative, it is the driving force for
nucleating jog-pairs at the sub-dislocations.

Another contribution arises from the pile-up
stresses, see the Appendix. In the initial configur-
ation the sum of the o,, component of the pile-
up stresses and the applied stress is zero for all
sub-dislocations. As the double-jogs form, however,
work is done on the leading segments at x; + h/m
as they more through x' (see Fig. 5) because the
stresses no longer sum to zero when x" # 0. The
stress component 0y, produced by the pile-up
and applied stresses is

ubx' { V- m ( 1

Oplx, +x") =

2(1—'1)) m itk XA(XA—x’)

1
B (xj + xk)(xj + Xp + x'))
1
_2mxk(2xk +x")
+ 1
@2 —x)@f2 —x, —x")

1
- (@2 —x)@/2 + xp +x")

} 21)

)

Figure 5 Two finite-edge dislocation loops
having Burger vectors b; = (0, u, 0) and
S Z b, = (0, b/m, 0) on loopsj and k, respec-
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The work done by the above stress-field on the
loop % is
him . 2bzk
wok) = |, 0p 0 + ) = dx
_ 4WJ(h)Zk
B mh
X { (N—Zl)m [1 XA(xj + Xp + h/m)
n
itk (XA-—h/m)(x]-+xk)

2h x5 ha
CmoF —xi)] (@2 —x}
@/2 —xpXa/2 + xp, + h/m)
(a/2 —xi —h/mXa/2 + xy)
. (_h/m in 2t h/m)} . (2)
m\ 2xy 2x4,

This energy, W,(k), is the major source for the
existence of the jog-pair set which cannot exist
in the smeared dislocation model in which o, (x), +
x)=0 for 0<x"<x,—xg,,. The total energy
of the kth double jog in an array such as that in
Fig. 3 is

Wy, = 2W;(k) + Wy (k)

+mln

+ 2 WinlG, k) + Wp(k); k>2,
j#k
i¢ (23)
with Wj(k) given by Equation 12, Wipn(f, k) given
by Equation 16, W, (k) given by Equation 22 and
the jog—jog interaction energy of the kth jog pair
Wis(k), given by Equation 8-100 of [16] as

Wi(k) = —Wy(k)n/Azy, .

The energy of the first double jog includes work
done by the applied stress (see Equation A2 of
the Appendix) and the surface-energy term, giving

(24)

Wy = 2W;(1) + Wg(1) + k};l Wine(k, 1)

+2(2G, — G)z4h. (25)

The total energy of the array, including that of the
first double jog, is then

We— X

jitkijz2

b

W= 2 WintlG. )] -

(26)
The term involving Wiy, is subtracted from W, in
the above summation to avoid double counting of

a given interaction term.

The initial doublejog set configuration can
then be determined. The critical formation energy,
Ww*, is found from Equation 26 by minimizing it
with respect to the configuration parameters z;, of
the p — 1 jog pairs k = 2, 3, .. ., p, and maximiz-
ing it with respect to z,. The problem is thus
one of solving a set of homogeneous equations
analogous to those for the straight dislocation
pile-up [21]. In practice the simplest approach is
to proceed numerically with the solution.

For convenience, in numerical calculation,
Equations 23, 25 and 26 can be transformed
into dimensionless units by dividing both sides of
the equations by 2WJ(1), the energy of two
isolated single abrupt jogs on a perfect dislo-
cation. Similarly, z; and x; are divided by 5 and
a/2, tespectively, to make them dimensionless.
For a given crack extension force, GG, the crack
length @ can be found from Equations 2 and A2,
provided N and m are known. For example, for
the case N =5 and m = 10, i.e., for the case of
one dislocation at the crack tip and 50 sub-
dislocations in the remainder of the half-crack,
the equilibrium configurations, x;,, of the double-
ended pile-up are known from Table ATl of the
Appendix. The value z, , calculated from Equation
9 for a given G and G, =2y, is locked and the
set of {z;} of p—1 jog paits k=2,3,...,p is
found. The integer p begins with 2 and increases
monotonically by 1 if, and only if,

p
w= Y |w,— X
k=2

J=kij>3

Wine(, k) | < O

27

and the convergency of z, determined from
solving p — 1 simultaneous non-linear equations
oW/[0z, = 0 are all satisifed. The variation of the
total energy, W,, with z; for configurations, so
minimized, is then determined, and the maximum
energy W* is found for the critical separation z},
as a first estimate. A new input z; is then taken as
the average of the initial value and the result of
the first calculation, to avoid oscillation in
approaching the true equilibrium, and a second
estimate of W* and z§ is obtained. Convergence
for both z7 and W™ is considered to be obtained
when the parameter € = |1 —zT/z,)| is less than
0.05. Here zi is the final estimate of z§ and {z,)
is the average of the preceding two estimates
of z%. The rapidity of convergence with e is illus-
trated in Table I. In general, the above criterion
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TABLE I Effect of ¢ on the critical size, zf, and
activation energy, W*, Data are for the case of the crystal
W under an applied crack-extension force G/2y = 1.0028,
withb/h=1andh =w

€ zf/b  Numberof  W¥2W(1) Number of
jog pairs iterations

002 234 15 0.91951 9

0.05 232 15 0.91796 6

0.10 232 15 0.91550 5

020 232 15 0.91550 5

gives results for zj and W* accurate within
1 per cent.

In general, there would be vibrational entropy
contributions S$* to the double-kink formation
free-energy
W* —TS8*

F* = (28)

where T is the absolute temperature and F* is
the doublekink formation free-energy. With
F* known, the double-kink nucleation rate, J,
in number per unit length of crack-tip per umit
time, can be written directly by analogy to the
analogous dislocation case [22, 23] as has been
achieved for the crack case by Sinclair [6]. The
result is

bh
O——Dk exp (— F*kT),

= 29
KT (29)

where 7, is the atomic spacing along the crack tip,
D, is the kink diffusivity along the crack-tip,
which can also be thermally activated [6], and &
is the Boltzmann constant.

4. Crack growth-rate in the

double-kink model
There are two forms of the crack velocity reaction
[6,22] depending on geometric quantities A and

L, where L is the mean length of a straight crack-
tip region and A is the average distance along
the crack-tip swept by one kink pair before it
annihilates with another kink pair.

N = 2h, exp (F*[2kT). (30)
If L <A, the crack velocity is
= MDk exp_F*. (31)
hIKT kT

If L >, Equation 31 holds with A replacing L, or
with the substitution of Equation 30, giving

20bh? —F*

nkT kP T

v = (32)

5. Results

Physical parameters for a number of cleavage
systems have been given by Rice and Thomson
[24] and are listed in Table II. Two entries are
given for iron for the two possible crack-tip direc-
tions [100] and [110]. The only free parameter
requiring selection in the magnitude of ». » has
been selected as the repeat distance normal to the
crack plane or, where the atomic spacings are
offset by appreciable translations in the crack
plane, as the atomic repeat distance normal to
the crack plane. These values for b are selected
so that sample calculations can be presented.
As discussed previously, in a more accurate
approach, b should be selected on the basis of
two-dimensional atomic calculations.

The results for a number of typical crystals for
the case N =6, m = 10, and 2 = w are presented
in Table IT1. Because of the interrelations among
G, N and « and Equations 2 and A8, these results
are typical of cases of large N with large a if

TABLE II Physical parameters of crystals [24]; (# k) and [h Kk I] represent cleavage plane and crack-tip direction,

respectively

Crystal Cleavage h (@) b (a,) y(Im?) Source u (1071° Pa) v a, (nm)
system

W 001) 0.5 0.5, 1.700 [25] 16 0.278 0.316
[100] 1.0

Fe ©o1) 0.5 0.5, 1.975 [26] 6.92 0.291 0.287
[100] 1.0

Fe 001 V22 0.5 1.975 [26] 6.92 0.291 0.287
[170]

Diamond ain NI V3/3 5.400 [27] 50.9 0.068 0.3567
[011]

Si ALy 24 V373 1.200 [28] 6.05 0.215 0.5430
011}

MgO oon 0.5 0.5, 1.200 [29] 11.57 0.173 0.42
[100] 1.0
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N?[qg ~ constant. The values of zi and W* are
given for both the simple estimate of Equations 8
and 9, where no jog set is present, and for the jog
set of Equation 26. The simple and more exact
results are seen to approach one another as the
crack-extension force increases. The largest
deviation between the two results for W* occurs
for Fe with a [110] crack-tip direction where
AW*/W*=0.25. A more typical difference is
= 0.10. As expected from simple physical reason-
ing, the number of jog-pairs tends to increase with
increased zi. This trend would eventually stop
because of the upper limit of 50 possible jog-pairs
and because of interactions between the two
halves of the pile-up array.

The effect of m on the results with ¥ =6 is
shown in Table IV. The number of jog-pairs
increases and the activation energy W™ decreases
as m increases. In essence, increased m reflects
increasingly fine resolution of the elastic displace-
ments of the crack surfaces near the double jog in
the leading dislocation. It is significant that jog
sets never form when m =1 for any case. Thus,
with m = 1, that is, when the crack is represented
by a perfect dislocation pile-up, the simple resuit
and the exact result coincide. The value of W* is
seen to converge rapidly with increased m. The
configuration converges less rapidly and would
give the precise linear elastic description only for
m — . The trend of increased zi with number
of jog-pairs is reasonable, however. The first extra
jog-pairs are at values of z; greater than z,, see
Table V. Hence, extra jog-pairs tend to compensate
for the displacement field in such a way that z{
first decreases drastically as the number of jog-
pairs at equilibrium becomes greater than 1.
For more and more jog-pairs the jog spacings,
z;, are weighted more to values less than z;, so
the equilibrium value of zi again increases. The
value of m ~ 10 gives near convergence for the
asymptotic number of jog-pairs at equilibrium.

A specific configuration for the double-jog set

TABLE IV Effect of m on the critical size ZT and
activation energy W¥. Data for the case of the crystal W
under an applied crack-extension force, G/2vy = 1.0028,
and with p/h = 1. Here,e = 0.02 isused and 4 = w

m PN Number of w2w3 1)
jog pairs
1 6 1 0.958
5 1.86 4 0.920
10 2.34 15 0.920
15 2.74 17 0921

TABLE V Equilibrium configuration z;/b of double-
jog set. Result for Fe with cleavage system, Burgers vector
and crack-extension force, (001) [100], b/z=2 and
G/2y = 1.0011, respectively

z, =1.072, z, =1.853, z, =1877
z, =1.904, z,=1929, z, =1.946
z,=1951, z, =1939, z, =1.905
z,, =1.842, z,, =1.745, z,, = 1.600
z,,=1.391, z,,=1.083, z,; =0.5841

is given for the example of Fe in Table V. This
result is typical and shows that double jogs near
the leading pair are larger and increase with
distance from the tip. The spacings then begin
to decrease with increasing distance from the tip,
eventually becoming less than that of the leading
pair. Again, this result agrees with simple physical
expectation in reflecting the relaxation of the
crack surfaces near the leading jog-pair.

In all cases, calculations were terminated for
initial separations z; <b. For such localized con-
figurations, the concept of a discrete crack-kink
pair loses its physical meaning, just as is the case
for a kink pair on a dislocation [22].

Turning to the case for # # w, it is noted that
all of the results for z7 and z; in TablesI to V
apply directly. The energies, of course, vary with
n/w, as indicated by Equation 8. This expression
shows that if w>h, W* is reduced by an amount
AW?* where

AW* = 2W9 (1 — hjw). (33)

For the case of a jog set, w affects only W;(k)
in Equations 23 and 26. Thus, again, the correc-
tion term can be written directly as

AW* = 2WS (1 —h/w)[1 + (p — 1)/m?].
(34)

Examples of the corrected W* values are given
in Table VI. More complicated cases where w for
k=1 differs from w for k > 1 can also be treated
with the above expressions, but we do not present
results for such cases.

TABLE VI Modification of the results of Table III
for the case of W, i = b, z;"/b = 6 without jog set

hiw Without jog With jog
set,m=1 set,m = 10
Ww*2w3(1)  Number of WH2WS (1)
jog pairs
1 0.958 15 0.920
0.5 0.458 15 0.350
0.2 0.158 19 0.034
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6. Discussion

The results show that the formation of double-
kinks at a crack-tip can be described in two
different regimes at high and low crack-extension
force, analogous to the behaviour of double-kinks
on dislocations. At low stresses, the kinks are
discrete. In this regime, if the kink configuration
is narrow, a specific prediction of the double-
kink formation energy is given. The only free
parameter is the estimate of the Burgers vector
of the leading dislocation in the pile-up. This
parameter, to be used in describing the three-
dimensional elastic field of the kinked crack tip,
can be determined from the displacement normal
to and near the crack tip in a two-dimensional
atomic simulation of a crack with a straight tip.
It is of great significance for the theory of crack
growth that, when the kinks are narrow, the
double-kink formation energy is independent of
the magnitude of the two-dimensional lattice-
trapping barrier. Here, the narrow kinks referred
to are those represented by sharp jogs on the
leading pile-up dislocation, as in Fig, 1, rather
than those spread in the z-direction, as in the
case of dislocations kinks in metals which tend
to be rather wide. If the crack kinks were wide,
the theory of Section 4 for growth would still
apply but the kink energy would be reduced, as
in the case of dislocation kinks in metals, as shown
in Equations 33 and 34 and in Table VI. The
result would depend on the magnitude of the
lattice-trapping barrier, and atomic calculations
would be required to determine the effective shape
of the jogs in the leading dislocation. Once the
latter shape was known, the present methodology
could be used. Results of atomic calculations for
the crack case [6, 30] and atomic theories for
brittle cracks [31, 32] support the concept of a
narrow kink, so that the present theory would be
directly applicable.

The low-stress theory is applicable for crack
extension forces between G, and a value G*
where z§ = b. For larger crack-extension forces,
the entire double-crack kink array is of atomic
extent only. In this limit, the concept of discrete
kinks in a kink-pair loses physical meaning and
atomic calculations would be required to deter-
mine both the configuration and the energy
of the critical kink nucleus. Again, an analogous
situation holds true for kinks on dislocations
[22].

Atomic calculations of the two-dimensional

lattice-trapping barrier have been performed with
both rigid [4, 33-35] and flexible [6, 7, 36]
boundary methods to treat the boundary con-
dition at the interface between discrete atoms near
the crack-tip and a surrounding elastic continuum.
While the flexible boundary method [37] is
amenable to three-dimensional problems such as a
kinked crack-tip, the appropriate linear elastic
boundary condition was hitherto lacking, so that
no three-dimensional atomic simulations have been
performed for a double-kink at a crack-tip. The
present results, in Table V for example, provide
the appropriate boundary condition. Since the
elastic field of a dislocation jog is known [38], the
elastic field of the set of jogs in Table V can be
generated by superposition, giving the field for the
kinked crack-tip in the low-stress limit. In the
high-stress limit, the critical kink nucleus is so
localized that, according to the principle of
St. Venant, it is probably a good approximation
to neglect the elastic field of the kinks. Thus,
elastic boundary conditions for a double-kink
would be available in both regimés. Methods are
therefore available to perform atomic calculations
in both the two- and three-dimensional cases and
to fully define crack motion by kink nucleation
and growth. _

The results of Table III suggest that, except for
the most refined calculations or the lowest crack
extension forces, a simple approximation would
suffice for the elastic field of the double-crack
kink. The simple results of Equations 8 and 9, and
the simple representation of the configuration as
a dislocation pile-up, continuum or discrete, with
a double jog in a leading discrete dislocation is
seen to give a good approximation for both z§ and
W*. This simple approximation could also be used
in atomic calculations.

We emphasize that all of the results here
presented are for critical-sized nuclei and apply
for crack growth where the nucleation and growth,
double-kink mechanism applies. The results would
not apply for widely-spaced kinks at thermal
equilibrium, for example, on an unstressed crack-
tip. There the number of extra jog-pairs needed
to describe the kinks would be greater because of
the delocalization of the kink—kink interaction
energy. As one indication of this trend, all sub-
dislocations in the pile-up array must acquire
sufficient jog-pairs to advance by a distance / as
zy; >0 and the entire pile-up adjusts to its new
unkinked equilibrium position.
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7. Conclusions

A double-kink at a crack tip can be represented
by a pile-up of dislocations containing a set of
double jogs. At low crack-extension forces and for
narrow jogs a specific prediction of the activation
energy for double-kink formation is presented,
completing the theory for crack growth by double-
kink nucleation and growth [7—10]. For a double-
kink in a crack, the equilibrium double-jog array
provides the corresponding elastic field which can
be used for boundary conditions in atomic calcu-
lations. The results also apply directly to the
advance of a climb pile-up of real dislocations by
double-jog nucleation and growth.
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Appendix: Calculation of the double-ended

dislocation pile-up configuration
There are a number of methods of calculating pile-
up configurations, as reviewed by Chou and Li
[39]. A new computational method has been
developed which considerably simplifies numerical
calculations. For our case of a pile-up of sub-
dislocations, the equilibrium configuration is
determined by the force balance between the
applied force o,,b/m and the dislocation inter-
action force.

ub 1 ‘N‘i)"' 1o, 1
Oyy = ———{ —
oo =wy)\m o 2\ X Xt x

1 1 1
al2—xp af2+x,

. (AD

2mx,,

wherej, k=1,2,...(N— D)m.

Here Equation Al is a set of (V¥ — 1)m non-
linear equations, which guarantee a net zero force
on each sub-dislocation at x;. By symmetry, the
force at the centre point of the double-ended pile-
up is zero; therefore, the applied stress may be
found, provided that N and m are known, from
Equation A1, which, for x;, = 0 reduces to

ub

1 (N-1)m 1 2
0. = —
Yy (1 —"V)

Y ot

i

. (A2)

m X

The discrete Equation Al can be transformed into
an integral equation by using the properties of the
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Dirac delta-function, i.e., f&(x—x)f(x")dx' =
f(x), so that

ub Jm p(x) dx (A3)

O' g
Yo 2m(1 —vym Y-anzx —x,
where p(x) is-the dislocation distribution function
defined by

(N-1)m

p(x) = Y

i

+m[6(x —af2) —6(x +a/2)]. (Ad)

[60Gr —x;) —8(x +x;)]

If x, in Equation A3 is assumed to be con-
tinuous in the interval of (—a/2, a/2), instead
of representing discrete dislocation positions,
Equation A3 can be replaced approximately by
Equation AS

bon — b Jm n(g) dg'
Yoo 2a(l—vym J-an g —§
for —

<E<=, (AS)

SRR

4
2
where n(§") is defined as a smeared dislocation

density function. Equation A5 is known as the
Hilbert transform of n(¢") and its solution is

(1 —v)maoy, l g ]
ub [(@/2)* —£71* |

, 2

nE) =
(A6)
The relation between the applied stress and the
length of the pile-ups (or the crack-length a) is

found from a condition of conservation of the
number of equivalent dislocations, i.e.,

al2
fo n@)ag' = Nm

. (A7)
TABLE Al Equilibrium positions x;, in units of a/27,
for the case of the leading perfect dislocation at the
crack-tip and 50 sub-dislocations with Burgers vector
(0, /10, 0) in the half-crack region

1.000000 0.991 313 0.9871788 0.984 146
0.980273 0976132 0.971701 0.966 968
0.961925 0.956 562 0.950873 0.944 85
0.93848 093177 0.924 704 0.917 269
0.909 45 0.90126 0.89267 0.883672
0.874 268 0.86442 0.85142 0.843 37
0.832135 0.820 397 0.80813 0.795 33
0.78195 0.767978 0.753 366 0.73808
0.72209 0.705 34 0.687775 0.669 335
0.649 94 0.62952 0.60797 0.585170
0.560964 0.53517 0.50757 0.477 85
0.445623 0.410320 0.37112 0.32676
0.274 97 0.211110 0.121 404




and the result is

_ Nub
= -——(1 . (A8)

Oyy

The approximated equilibrium configuration of
the sub-dislocations in the pile-up can be statisti-
cally determined from the smeared dislocation-
density function n(¢") as follows:

X(N~1)m
[, e

i [1 B (1 B 4x2(1v2— 1)m)”2]

a

1
2

I

E(N-1Dm-1 , ,
jf(N—l)m n(&) di

= [(1 - 1)m)”2

a

_(1_4)22(N—1)m—1)”2]

a2

~_4)?1.24“ 1/2 _{, _4i—j2‘ 1/2
a2 ’

(A9)

I
§
/‘?

hIs.l

where X; denote the approximated equilibrium
configurations. If we take the sum of the above
(N — )m —j equations counted from the top and
then simplify, we have the solution for %;,

_a
2Nm[

% (Nm)® — (m +j + 0.5)*1"2.

(A10)

The exact positions x; are then determined for
Equation A1 by the Newton—Raphson method
using X; as the first estimate. Convergence was
quite rapid, four to five iterations, because the
X; were close to the final equilibrium positions x;.
The values of x; for the case N =6, m = 10 are
shown in Table Al.
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