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On brittle crack advance by 
double kink nucleation 

I.-H. L IN* ,J .  P. H IRTH 
Metallurgical Engineering Department, Ohio State University, Columbus, 
Ohio 43210, USA 

A Mode I brittle crack is simulated by a pile-up of edge dislocations. The leading dis- 
location is a perfect lattice dislocation and the remaining dislocations are sub-dislocations 
with fractional Burgers vectors. A double kink at the crack-tip is represented by a set of 
double jogs on the dislocations. The equilibrium jog array is determined for several 
examples. The calculations give results for the activation energy for double-kink forma- 
tion and for the elastic field of double kinks. The results are applicable to theoretical 
estimates of crack-growth rates and in providing boundary conditions for atomic 
simulations. 

I, Introduction 
Thomson, Hsieh and Rana [1] and Hsieh and 
Thomson [2] were the first to investigate "lattice 
trapping" which can be defined as a phenomenon 
related to a barrier to atomic lattice healing or 
opening at the crack-tip of a brittle solid. Such 
an energy barrier to the propagation of a crack 
under an applied load arises from the effect of 
the discreteness of the atomic structures. The 
behaviour of a crack-tip is therefore analogous 
to that of a dislocation, where the Peierls-Nabarro 
barrier [3] can provide a significant resistance to 
the motion of a dislocation. Gehlen and Kanninen 
[4] were the first to investigate the atomic crack 
model for s-iron, considering a three-dimensional 
configuration containing a kink or off-set in an 
otherwise straight crack-tip. They showed that the 
crack-tip containing the kink was much more 
mobile than a straight crack-tip. The mobility of 
kinked crack-tips in atomic models has since been 
examined by others [4-7] .  Moreover, kink models 
of crack growth have been developed by Hseih 
and Thomson [2], Lawn and Wilshaw [8], Lawn 
[9], Sinclair [6], and Krausz [10]. 

These studies suffice to show that brittle crack 
propagation in the lattice-trapping region proceeds 
by the nucleation and subsequent motion of kinks 
at the crack-tip. However, while they provide 
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results for the kink mobility, they do not provide 
data on the energetics of double-kink nucleation, 
primarily because of the lack of a suitable elastic 
boundary condition on the atomic region. As a 
consequence, all of the models involve simplifying 
approximations for double-kink nucleation energy: 
either that of a constant kink-formation energy 
[8-10] ,  or that of a double-kink interaction 
energy which varies linearly with strain-energy 
release rate [6]. The results of Sinclair [6], for 
a model of covalently-bonded silicon indicate that 
the kink configuration is localized, implying a 
short-range double-kink interaction energy. How- 
ever, it was not possible in his work to deduce the 
form of the interaction. For less strongly bonded 
metals, the degree of localization of the kink 
configuration is not known. 

Following the suggestion of Friedel [11] a 
planar tensile crack with a straight tip can be 
represented by a continuous distribution of 
infinitesimal edge dislocations in a climb-pile-up 
array. The behaviour of such cleavage or crack 
dislocations is reviewed by Smith [12]. The field 
of the continuous distribution is equivalent to the 
continuum elastic result for such a crack, so it is 
evident that the planar crack with a circular tip 
discussed by Leibfried [13] in an elastic approach 
can be represented by a continuous distribution of 
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infinitesimal circular dislocations. In the present 
work, following an earlier suggestion [14], the 
above models are extended to describe the elastic 
field of  a crack with a straight tip except for the 
presence of  a double-kink, equivalent to a double- 
jog in the crack dislocations. The crack-tip, which 
experiences the lattice-trapping barrier and where 
the nascent free surface is created, is represented 
by a discrete crack dislocation, with its Burgers 
vector to be determined from a two-dimensional 
atomic simulation, and the remainder of  the crack 
is represented by infinitesimal dislocations. The 
elastic field of  the region adjoining the double-kink 
can then be represented in terms of  a set of  double- 
jogs on the continuous infinitesimal dislocations 
(an analogue would be the circular dislocations of  
Leibfried which could be represented, except very 
near the dislocation, by a set of  jogs where the 
loop deviated from a low-index direction). 

In practice, the treatment of  an infinitesimal 
set of  double-jogs is impractical from the view- 
point of  numerical computation time. Thus, two 
approximate models of  the double-kinked crack 
are adopted. 

In the first, a double-jog is permitted on the 
leading dislocation, but the other infinitesimal 
dislocations are assumed to remain straight. 

In the second the remaining continuous dis- 
location distribution is transformed into discrete 
sub-dislocations with Burgers vector magnitude 
b /m ,  where m is an integer greater than or equal 
to unity and m = 1 corresponds to a set of  perfect 
lattice dislocations. An optimum value of  m is 
selected for a given problem, a larger value giving 
a better approximation of the elastic field but 
requiring a longer calculation. Although the first 
approach is simpler, the second method is more 
accurate, giving lower double-kink activation 
energies at the crack-tip because of the double- 
kink sets formed on the discrete sub-dislocations. 
A comparison of  the two models delineates the 
regim~ where the simpler model can successfully 
be used as an approximation. 

In terms of  the results, a specific mechanism 
of double-kink nucleation can be added to the 
kink models for crack growth [6 -10 ]  in the 
trapped region. For a specific crack-tip configur- 
ation, the results also provide three-dimensional 
elastic solutions which can be used in atomic 
calculations. The free parameters in the model, 
the Burgers vector of  the lead dislocation and the 
width of  the jogs in it, can be determined from a 
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two-dimensional atomic sumulation and applied 
to three-dimensional problems. Of course, with 
m = 1, the results also provide a solution for the 
advance of  a climb-pile-up array o f  real dislo- 
cations by double-jog nucleation and growth. 

2. Double-kink nucleation in a continuum 
dislocation model of the crack 

Consider an infinite isotropic elastic medium 
subjected to a uniform applied tensile stress 
o = ayy at y =oo. The medium contains a pre- 
existing Mode 1 planar crack of  extent a in the 
x-direction, lying normal to the plane y -- 0, and 
with straight crack-tips of  infinite extent lying 
parallel to the z-direction. The linear elastic crack 
field, represented as the limit at a large aspect- 
ratio of  the result of  Inglis [15] for a crack of  
elliptical cross-section, is reproduced exactly by 
a continuous distribution of  infinitesimal edge 
dislocations in a clumb-pile-up array, as discussed, 
for example, in [12, 16]. In such a model, the 
energy released per unit depth, L, in the z-direction 
in forming the crack is 

W/L = rroLoZa2/8#, (1) 

where ~ = ( 1 - - v )  for plane-strain and e =  
(1 + v) -1 for plane stress, v is Poisson's ratio and 
# is the shear modulus. The force per unit length, 
F / L ,  on the leading dislocation in the pile-up is 
then equivalent to the strain-energy release rate, 
G, and is related to the stress-intensity factor, 
KI = o(rra/2) 1/z as follows 

F/L  = d ( W / r ) / d a  = G = K]a/Zla 

= rroLo2a/4#. (2) 

The critical value for crack propagation, the frac- 
ture criterion, is 

Ge = 23' + Girt, (3) 

where 3' is the surface-energy per unit area of  the 
created surfaces and Girt represents other energy 
dissipated for a crack advanced by a distance da. 
With Gi~r = 0, the advance da is a reversible 
thermodynamic process, and Equation 3 reduces 
to the Griffith result [17]. With Gi~ arising from 
a plastic work of  dissipation, Equation 3 corre- 
sponds to the I rwin-Orowan generalization [18, 
19] of the Griffith result to the case of contained 
ductile fracture. Even in the absence of  plastic 
flow, irreversible effects in "bond-breaking" in 
the crack tip can contribute to Gi~r. For an 



actual crack, non-linear elastic effects should be 
important at the crack-tip on a size scale of the 
order of the atomic spacing, so that the linear- 
elastic continuous dislocation distribution (or 
the continuous elastic-crack solution) does not 
apply. Also, the period of the oscillation in the 
lattice-trapping barrier is the atomic spacing, h, 
in the x-direction. Thus, it is convenient to replace 
the dislocation distribution at the crack-tip by an 
imaginary discrete lattice dislocation. A jog in 
this dislocation then is equivalent to a kink in 
the crack-tip, as represented in Fig. 1. Any un- 
certainties in this description are non-linear in 
nature and localized to the near crack-tip region: 
the long-range elastic field of the configuration is 
the correct one. Because of the short-range nature 
of the atomic reactions, the non-linear elastic 
effects on the crack rapidly diminish as the distance 
from the crack-tip increases. Consequently, 
the remainder of the crack can continue to be 
represented by a continuous distribution of 
infinitesimal dislocations. 

For the model of Fig. 1, the activation energy 
of nucleating a double-kink in the crack tip is 
determined by minimizing the total elastic energy 
(i.e., the Gibbs free-energy of the system), which 
is achieved by creating a double-jog of length 2zl 
in the first dislocation and supplying the forma- 
tion energy of two jogs. The formation energy 
consists of a generalized surface energyfZ'  G c h d z  

and a jog-jog interaction energy, accompanied by 

an energy change equal to the work done on the 
system in the amount f_zz, ' G h d z .  The jog-formation 
energy, Wj, of  a single jog of lattice length, h,  and 
Burgers vector magnitude, b, is (see Equation 8-99 
in [16]) 

W~ = l~b2h/47r(1- -p) ,  h = w (4) 

and 

W a = u b Z h 2 / 4 n w ( 1 - - v ) ,  h v a w ,  (5) 

where w is the jog-width (see Equation 8-69 in 
[16]). Unlike a true lattice dislocation which 
always has abrupt jogs with w ~ h ,  the fictitious 
crack dislocations can widen, their width depend- 
ing on the magnitude of the lattice-trapping 
barrier. The actual width can be determined by 
two-dimensional atomic calculations such as those 
of Sinclair [6]. Since b is also to be determined 
from atomic calculations, the simpler form in 
Equations 4 and 5 are retained in most of the 
remaining calculations, .equivalent to the assump- 
tion w ~ h. We do include example cases where 
h 4:w. Of importance for later discussion, the 
configuration of the crack depends only on the 
jog-jog interaction energy and is independent 
of w. Thus, all the results can be easily modified 
if a value of w is known. 

The jog-jog interaction energy, Wag , is (see 
Equation 8-100 in [16]) 

W j j  = - -  Wah/4z  1 . (6) 

2 '  3 '  3 2 I 

t 
~ X  

Figure 1 Double-jog configur- 
ation at the tip of crack repre- 
sented by dislocation arrays. 
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The total energy of the double-jog at the crack 
tip is 

w = 2 w ~ -  W~h/4z~ + (ae - a )hdz .  

(7) 
The activation energy is found from ~W/~zl = O. 
The maximum value of W and its corresponding 
zx-value for a given value of G are, respectively, 
W* and z~ where 

W* = 2W~(h/w--h/4z~) (8) 
and I ],,2 

z~ = 8 ( G - - -  * - G e(Z )) J (9) 

where Ge(z{) is the value of G e evaluated at 
z l = z { .  Equations8 and 9 provide a simple 
solution for the activation energy of a critical- 
sized double-kink nucleus at the crack-tip, which 
is required to complete the theories of motion of 
a kink-pair in the lattice-trapping region. This 
result is the self-consistent one which should be 
used with a dislocation pile-up representation of 
a crack. In the next section a new method is 
presented for the determination of the equili- 
brium configuration of discrete dislocations in 
the pile-up. This method makes it possible to 
investigate the effect of double jogs on the crack 
growth. In connection with the previous discussion 
of w, Equations 8 and 9 show that, while W* 
scales with w, z~ is independent of w, anticipating 
the more general result with a complete jog set. 

Z 

3. Double-kink nucleation in a discrete 
dislocation model 

An alternative model to the continuum dislo- 
cation model which gives an improved description 
of the crack-tip region retains the discrete dis- 
location at the crack tip, but replaces the remain- 
ing continuous dislocation distribution by discrete 
sub-dislocations with Burgers vectors of magnitude 
b/m, where m is an integer greater than or equal 
to unity and m = 1 corresponds to a set of perfect 
lattice dislocations. Thus, the model of the crack 
is a discrete dislocation at the crack tip with sub- 
dislocations comprising the remainder of the 
crack. Independent of the actual nature of atomic 
forces at the crack tip, this model gives a solution 
for the elastic field which is correct at distances 
large compared to the interdislocation spacing 
according to the principle of St. Venant. It 
accurately represents the local relaxations of the 
crack surfaces near the double-kink, a feature 
not included in the simple model of Section 2. The 
approximations of actual non-linear behaviour in 
this model are embodied in the replacement of 
the actual displacement distribution within a few 
atomic distances of the crack-tip by those of the 
leading discrete dislocation. 

With a net driving force (G =~ Ge) for crack 
growth or shrinkage, the leading discrete dislo- 
cation at the tip sustains the lattice-trapping force, 
as indicated in Fig. 2. At constrained equilibrium 
for the .crack configuration, this force is balanced 
by the pile-up stresses produced by the sub- 
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Figure 2 Discre te  d i s loca t ion  represen-  

t a t i o n  o f  a crack.  



dislocations. The sub-dislocations are in a con- 
strained equilibrium distribution with the applied 
force ayyb/m balanced by dislocation interaction 
forces. This pile-up distribution is determined 
from standard pile-up theory. The particular 
method is a new one, presented in the Appendix, 
in which discrete dislocation positions are initially 
estimated for continuous infinitesimal dislo- 
cation theory and the exact positions are then 
determined from perturbation theory in a series 
expansion approach. 

A double-jog of  length 2zx is then created and 
constrained at position zl on the leading dislo- 
cation. The equilibrium configuration of a set 
of double-jogs on the discrete sub-dislocations is 
then determined. Finally, zl is varied, together 
with the configuration of  the jogs on the sub- 
dislocations, to compute the activation energy 
for the jog pair on the leading dislocation. 

A possible configuration is shown in Fig. 3. 
The double-jog configuration can be achieved by 
superposing a rectangular dislocation loop upon 
a straight dislocation line, see Fig. 4. A loop 
defined by co-ordinates x i and zj, as in Fig. 4, 
produces the stress component %y,  which contri- 
butes to the interaction force between loops, at a 
point xk,  z~. oyy is determined (from Equations 
5-45 in [16]) to be 

%y(/, k) - Wj(] ' )  - - L  A L B 

hb [~AZA XAZ~ 

/ /  
/ 

/ 
/ 

i i i i  z/z/l" 
/ , '  2 z:/ 

/ / / /  
/ __/ / 

z 

Figure 3 A tensile crack and double-jog band. 
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A (x/+r -z/) 

B(x/, -zj} 

O(x/ +q, z]) 

I 

C(xj,&.) 

~ z  

Figure 4 Creation of a jog-pak by superposition of a dis- 
location loop (solid line) on a straight dislocation line 
(dashed line). Arrows indicate the sense vector of the 
dislocation: q = h, for] = 1 ; and q = h/m, for] >/2. 

L~ L.] (lO) 
+ XBZA -[- XB Z ' 

where the jog formation energy of  a single jog of  
length h is by extension of  Equation 4 

Wj(]') = pb2hZ/47rm2w(1 -- v); 

Wj(]) = pb2h2/47rw(1 -- v); 

]>~ 2 

(11) 
/ = 1  

(12) 

and the other factors are reduced co-ordinates 

XA= 
Z A = (13) 

Z B = 

LB = (14) 

L c = 

LD = (is) 

where q = h  for ] = 1  and q = h / m  for ] ~ 2 .  
Given the above stress field, the interaction energy 
between loops, positioned as in Fig. 5, determined 
by the method of  Brown [20], is 

Wint( ] ,  k)  : _b f zk f xlz+ h/m yy (]', k) dx' k dz'k 
m " -Zk dXk 

xj  -- xk  , XB  = xj  + q -- xk  ; 

zj - - z k ;  

zj + zk ,  LA : (X~ + Z~)  '/2 ; 

(X  2 + Z2)  u2 ; and 

(X~ + Z ~ )  u2 and 

(Xl~ - t - / 2 ) 1 / 2 ,  
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2Wj(]) 
t2(LA --LB - -Lc  + Lo mh 

+ L n - - L v - - L ~  + LH) 

+ X B l n  ~--~B ~---~D } 

(XB+LE--h lm]  
- (XB --h/m) in \ ~  I,v --h/m] 

1 +(XA--h/m) l n \ x - - ~ L r i  h - ~ ]  

+ ZB In [ (Z~ +_ L~)(Z~ + L~) ] 
[(ZB + LH)(Z. + LD)] 

+ ZA In [~ZAA + LG)(ZA +- Lc) ] 
+ t.E)(ZA + I~A) ] 

, [ XB(XA--h/m)]I 

(16) 
Here, 

LE = [Z~ + (XB--h/m)2] 1/2, (17) 

LF = [ZI~ + (XB - - h / m ) 2 ]  1/2, (18) 

La = [Z~ + (XA --h/m)2] 1/2 (19) 
and 

LH = [Z~ + (XA -- h/m) 2 ]1/~. (20) 

Since Wint(J', k) = Wint(k,]), Equation 11 is the 

complete expression for determining the inter- 
action energy between loops. The absolute value 
of [4]int(], k) in Equation 11 is a monotonically 
increasing function of zj, zk, h, and h/m and a 
decreasing function of the separation distance, XA. 
Since Wire is negative, it is the driving force for 
nucleating jog-pairs at the sub-dislocations. 

Another contribution arises from the pile-up 
stresses, see the Appendix. In the initial configur- 
ation the sum of the oy~ component of the pile- 
up stresses and the applied stress is zero for all 
sub-dislocations. As the double-jogs form, however, 
work is done on the leading segments at xj + him 
as they more through x' (see Fig. 5) because the 
stresses no longer sum to zero when x' v~ 0. The 
stress component ay~ produced by the pile-up 
and applied stresses is 

pbx' { 1 (N-1)m ( 1 
+ x ' )  - m 

_ , ) 
(xj + ~)(x~ + x~ + x' 

1 

2mxh(2xk + x') 

1 
4 

(a/2 -- xk)(a/2 --xk -- x') 

1 } (21) 
(a/2 --xk)(a/2 + xk + x') 

(xi +q, -el) (x/+q, z/) 

loop/ 

(9, ~)  

(x, + ~-,-z,) 

_1 
(x,,-~) 

loop k 

(x/,z/) 

(x, + ~,z,)  

Ix,,..,) 

z 

Figure 5 Two finite-edge dislocation loops 
having Burger vectors by = (0, u, 0) and 
b k = (0, b/m, 0) on loops ] and k, respec- 
tively: u = b  and q = h  for ] = 1 ;  and 
u = b/m andq =him for/'/> 2. 
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The work done by the above stress-field on the 
loop k is 

r h i m  2bzk dx' 
Wp(k) = Jo Op(Xk+X') m 

4Wa(h)zk 
mh 

( ( N ) m [  X A ( x j + x k + h / m ) ~  in 
X j ~  (XA -- h/m)(xj + xk) 

2h xj ] ha 
m (x~ ----x~)] (a/2) 2 - -xg 

+ m in (a/2 --xk)(a/2 + xk + h/m) 
(a/2 --xk -- h/m)(a/2 + xk) 

[ 2x k + h/m]t 1_ I--h/m+ln , ~ .  (22) + 
m \ 2 x k  2x2 ] )  

This energy, Wp(k), is the major source for the 
existence of the jog-pair set which cannot exist 
in the smeared dislocation model in which Op(Xk + 
x ' )  = 0 for 0~<X'~<Xk--Xk+x. The total energy 
of the kth double jog in an array such as that in 
Fig. 3 is 

Wk = 2Wj(k) + Waa(k) 

+ r, wi.,q, k) + wp(k); >/2, 
J e k (23) 

with Wj(k) given by Equation 12, Wint(J, k) given 
by Equation 16, Wp(k) given by Equation 22 and 
the jog-jog interaction energy of the kth jog pair 
Waa(k), given by Equation 8-100 of [16] as 

W j j ( k )  = - -  Wj(k)h/4z k. (24) 

The energy of the first double jog includes work 
done by the applied stress (see Equation A2 of 
the Appendix) and the surface-energy term, giving 

[411 = 2Wj(1) + Wja(1) + )-'. Wint(~, 1) 
k = l  

+ 2(2Ge -- G)zlh. (25) 

The total energy of the array, including that of the 
first double jog, is then 

k = l  j ~ k ; j ~ 2  

(26) 
The term involving Wire is subtracted from Wn in 
the above summation to avoid double counting of 
a given interaction term. 

The initial double-jog set configuration can 
then be determined. The critical formation energy, 
W*, is found from Equation 26 by minimizing it 
with respect to the configuration parameters zk of 
the p -- 1 jog pairs k = 2, 3 . . . . .  p,  and maximiz- 
ing it with respect to Zl. The problem is thus 
one of solving a set of homogeneous equations 
analogous to those for the straight dislocation 
pile-up [21]. In practice the simplest approach is 
to proceed numerically with the solution. 

For convenience, in numerical calculation, 
Equations23, 25 and 26 can be transformed 
into dimensionless units by dividing both sides of 
the equations by 2W~(1), the energy of two 
isolated single abrupt jogs on a perfect dislo- 
cation. Similarly, zk and xk are divided by b and 
a/2, respectively, to make them dimensionless. 
For a given crack extension force, G, the crack 
length a can be found from Equations 2 and A2, 
provided N and m are known. For example, for 
the case N =  5 and m = 10, i.e., for the case of 
one dislocation at the crack tip and 50 sub- 
dislocations in the remainder of the half-crack, 
the equilibrium configurations, x~, of the double- 
ended pile-up are known from Table AI of the 
Appendix. The value Zl, calculated from Equation 
9 for a given G and G e = 27, is locked and the 
set of {zk} of p - - 1  jog pairs k = 2, 3 , . . .  ,p  is 
found. The integer p begins with 2 and increases 
monotonically by 1 if, and only if, 

k=2 j=k ; j>~3  

(27) 

and the convergency of zk determined from 
solving p -  1 simultaneous non-linear equations 
~)W/3zk = 0 are all satisifed. The variation of the 
total energy, W1, with za for configurations, so 
minimized, is then determined, and the maximum 
energy W* is found for the critical separation z~', 
as a first estimate. A new input Zl is then taken as 
the average of the initial value and the result of 
the first calculation, to avoid oscillation in 
approaching the true equilibrium, and a second 
estimate of W* and zl' is obtained. Convergence 
for both zl" and W* is considered to be obtained 
when the parameter e = l l --z~/(zl)l is less than 
0.05. Here zl' is the final estimate ofz~' and (zl) 
is the average of the preceding two estimates 
of zl'. The rapidity of convergence with e is illus- 
trated in Table I. In general, the above criterion 
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T A B L E  I Effect of e on the critical size, z*, and 
activation energy, W*. Data are for the case of the crystal 
W under an applied crack-extension force G/23" = 1.0028, 
with b/h = 1 and h = w 

e z~/b Number of W*/2WJ (1) Number of 
jog pairs iterations 

0.02 2.34 15 0.91951 9 
0.05 2.32 15 0.91796 6 
0.10 2.32 15 0.91550 5 
0.20 2.32 15 0.91550 5 

gives results 
1 per cent. 

In general, 
contributions 
free-energy 

f o r  z~' and W* accurate within 

there would be vibrational entropy 
S* to the double-kink formation 

F* = W*--  TS* (28) 

where T is the absolute temperature and F*  is 
the double-kink formation free-energy. With 
F*  known, the double-kink nucleation rate, J ,  

in number per unit length of  crack-tip per uriit 
time, can be written directly by analogy to the 
analogous dislocation case [22, 23] as has been 
achieved for the crack case by Sinclair [6]. The 
result is 

abh 
J = - - D k  exp ( - -F*/kT) ,  (29) 

h2zkT 

where hz is the atomic spacing along the crack tip, 
Dk is the kink diffusivity along the crack-tip, 
which can also be thermally activated [6], and k 
is the Boltzmann constant. 

4. Crack growth-rate in the 
double-kink model 

There are two forms of  the crack velocity reaction 
[6, 22] depending on geometric quantities X and 

L, where L is the mean length of  a straight crack- 
tip region and X is the average distance along 
the crack-tip swept by one kink pair before it 
annihilates with another kink pair. 

X = 2h z exp (F*/2kT). (30) 

I f L  < X, the crack velocity is 

obh ZL -- F* 
v - h2kT D k exp k---T- (31) 

If L > X,.Equation 31 holds with X replacing L, or 
with the substitution of  Equation 30, giving 

2obh 2 - -F* 
v - - - D  k e x p -  (32) 

hzkT 2kT 

5. Results 
Physical parameters for a number of  cleavage 
systems have been given by Rice and Thomson 
[24] and are listed in Table II. Two entries are 
given for iron for the two possible crack-tip direc- 
tions [1 00]  and [1 TO]. The only free parameter  
requiring selection in the magnitude of  b. b has 
been selected as the repeat distance normal to the 

crack plane or, where the atomic spacings are 
offset by appreciable translations in the crack 
plane, as the atomic repeat distance normal to 
the crack plane. These values for b are selected 
so that sample calculations can be presented. 
As discussed previously, in a more accurate 
approach, b should be selected on the basis of  
two-dimensional atomic calculations. 

The results for a number of  typical crystals for 
the case N = 6, m = 10, and h = w are presented 
in Table III. Because of  the interrelations among 
G, N and a and Equations 2 and A8, these results 
are typical of  cases of  large N with large a if 

TAB L E I I Physical parameters of crystals [24]; (h k I) and [h k l] represent cleavage plane and crack-tip direction, 
respectively 

Crystal Cleavage h (a o) b (a o) 3' (J m-2) Source p (10 -1~ Pa) v a o (nm) 
system 

W (00 1) 0.5 0.5, 1.700 [25] 16 0.278 0.316 
[100] 1.0 

Fe (0 0 1) 0.5 0.5, 1.975 [26] 6.92 0.291 0.287 
[100] 1.0 

Fe (0 0 1) x/~/2 0.5 1.975 [26] 6.92 0.291 0.287 
[1i0]  

Diamond (1 1 1) x/2[4 x/~/3 5.400 [27] 50.9 0.068 0.3567 
[ 0 i l 1  

Si (1 1 1) w'~/4 ,f3/3 1.200 [28] 6.05 0.215 0.5430 
{o111 

MgO (001) 0.5 0.5, 1.200 [29] 11.57 0.!73 0.42 
[lOO] 1.o 
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N2/a ~ constant. The values of z~ and W* are 

given for both the simple estimate of Equations 8 

and 9, where no jog set is present, and for the jog 
set of  Equation 26. The simple and more exact 
results are seen to approach one another as the z, = 1.072, 
crack-extension force increases. The largest z 4 = 1.904, 

z~ = 1.951, 
deviation between the two results for W* occurs z,0 = 1.842, 
for Fe with a [1 TO] crack-tip direction where z,3 =1.391, 
A W * / W * =  0.25. A more typical difference is 

0.10. As expected from simple physical reason- 
ing, the number of jog-pairs tends to increase with 
increased z~. This trend would eventually stop 

because of the upper limit of 50 possible jog-pairs 
and because of interactions between the two 
halves of the pile-up array. 

The effect of m on the results with N = 6 is 

shown in Table IV. The number of jog-pairs 
increases and the activation energy W* decreases 

as m increases. In essence, increased m reflects 
increasingly fine resolution of the elastic displace- 

ments of the crack surfaces near the double jog in 
the leading dislocation. It is significant that jog 

sets never form when m = 1 for any case. Thus, 
with m = 1, that is, when the crack is represented 

by a perfect dislocation pile-up, the simple result 

and the exact result coincide. The value of W* is 
seen to converge rapidly with increased m. The 

configuration converges less rapidly and would 
give the precise linear elastic description only for 
m-~  ~.  The trend of increased z~ with number 
of jog-pairs is reasonable, however. The first extra 

jog-pairs are at values of zj greater than za, see 
Table V. Hence, extra jog-pairs tend to compensate 
for the displacement field in such a way that z~ 
first decreases drastically as the number of jog- 
pairs at equilibrium becomes greater than 1. 
For more and more jog-pairs the jog spacings, 
zj, are weighted more to values less than z l ,  so 
the equilibrium value of z~ again increases. The 
value of m ~ 10 gives near convergence for the 

asymptotic number of jog-pairs at equilibrium. 
A specific configuration for the double-jog set 

TABLE IV Effect of m on the critical size z* and 
activation energy W*. Data for the case of the crystal W 
under an applied crack-extension force, G/2"). = 1.0028, 
and with b/h = 1. Here, e = 0.02 is used and h = w h/w 

m z*/b Number of W*/2W~ (1) 
jog pairs 

1 6 1 0.958 
5 1.86 4 0.920 

10 2.34 15 0.920 
15 2.74 17 0.921 
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T A B L E V Equilibrium configuration zJb of double- 
jog set. Result for Fe with cleavage system, Burgers vector 
and crack-extension force, (00 1) [1 00], b/h = 2 and 
G/27 = 1.0011, respectively 

z 2 = 1.853, z 3 = 1.877 
z s = 1.929, z 6 = 1.946 
z a = 1.939, z 9 = 1.905 
zl~ = 1.745, z12 = 1.600 
z14 = 1.083, z~s =0.5841 

is given for the example of Fe in Table V. This 

result is typical and shows that double jogs near 
the leading pair are larger and increase with 
distance from the tip. The spacings then begin 

to decrease with increasing distance from the tip, 

eventually becoming less than that of the leading 
pair. Again, this result agrees with simple physical 

expectation in reflecting the relaxation of the 
crack surfaces near the leading jog-pair. 

In all cases, calculations were terminated for 
initial separations za < b. For such localized con- 
figurations, the concept of a discrete crack-kink 

pair loses its physical meaning, just as is the case 
for a kink pair on a dislocation [22]. 

Turning to the case for h # w, it is noted that 

all of the results for z~ and zj in Tables I to V 
apply directly. The energies, of course, vary with 

h/w,  as indicated by Equation 8. This expression 
shows that if w > h ,  W* is reduced by an amount 
AW*, where 

A W * =  2 W ~  (33) 

For the case of a jog set, w affects only Wa(k ) 
in Equations 23 and 26. Thus, again, the correc- 

tion term can be written directly as 

AW* = 2W~ - -h /w)[1  + (p - -  1)/m21. 

(34) 

Examples of the corrected W* values are given 

in Table VI. More complicated cases where w for 
k = 1 differs from w for k > 1 can also be treated 

with the above expressions, but we do not present 
results for such cases. 

TAB LE V1 Modification of the results of Table III 
for the case of W,h = b,z*/b = 6 without jog set 

Without jog With jog 
set,m = l set, m = 10 

�9 o w,/2w3(1 ) W /2Wj (1) Number of 
jog pairs 

1 0.958 t5 0.920 
0.5 0.458 15 0.350 
0.2 0.158 19 0.034 



6. Discussion 
The results show that the formation of double- 
kinks at a crack-tip can be described in two 
different regimes at high and low crack-extension 
force, analogous to the behaviour of double-kinks 
on dislocations. At low stresses, the kinks are 
discrete. In this regime, if the kink configuration 
is narrow, a specific prediction of the double- 
kink formation energy is given. The only free 
parameter is the estimate of the Burgers vector 
of the leading dislocation in the pile-up. This 
parameter, to be used in describing the three- 
dimensional elastic field of the kinked crack tip, 
can be determined from the displacement normal 
to and near the crack tip in a two-dimensional 
atomic simulation of a crack with a straight tip. 
It is of great significance for the theory of crack 
growth that, when the kinks are narrow, the 
double-kink formation energy is independent of 
the magnitude of the two-dimensional lattice- 
trapping barrier. Here, the narrow kinks referred 
to are those represented by sharp jogs on the 
leading pile-up dislocation, as in Fig. 1, rather 
than those spread in the z-direction, as in the 
case of dislocations kinks in metals which tend 
to be rather wide. If the crack kinks were wide, 
the theory of Section 4 for growth would still 
apply but the kink energy would be reduced, as 
in the case of dislocation kinks in metals, as shown 
in Equations 33 and 34 and in TableVI. The 
result would depend on the magnitude of the 
lattice-trapping barrier, and atomic calculations 
would be required to determine the effective shape 
of the jogs in the leading dislocation. Once the 
latter shape was known, the present methodology 
could be used. Results of atomic calculations for 
the crack case [6, 30] and atomic theories for 
brittle cracks [31, 32] support the concept of a 
narrow kink, so that the present theory would be 
directly applicable. 

The low-stress theory is applicable for crack 
extension forces between G c and a value G* 
where z~ = b. For larger crack-extension forces, 
the entire double-crack kink array is of atomic 
extent only. In this limit, the concept of discrete 
kinks in a kink-pair loses physical meaning and 
atomic calculations would be required to deter- 
mine both the configuration and the energy 
of the critical kink nucleus. Again, an analogous 
situation holds true for kinks on dislocations 
[221. 

Atomic calculations of the two-dimensional 

lattice-trapping barrier have been performed with 
both rigid [4, 33-35]  and flexible [6, 7, 36] 
boundary methods to treat the boundary con- 
dition at the interface between discrete atoms near 
the crack-tip and a surrounding elastic continuum. 
While the flexible boundary method [37] is 
amenable to three-dimensional problems such as a 
kinked crack-tip, the appropriate linear elastic 
boundary condition was hitherto lacking, so that 
no three-dimensional atomic simulations have been 
performed for a double-kink at a crack-tip. The 
present results, in Table V for example, provide 
the appropriate boundary condition. Since the 
elastic field of a dislocation jog is known [38], the 
elastic field of the set of jogs in Table V can be 
generated by superposition, giving the field for the 
kinked crack-tip in the low-stress limit. In the 
high-stress limit, the critical kink nucleus is so 
localized that, according to the principle of 
St. Venant, it is probably a good approximation 
to neglect the elastic field of the kinks. Thus, 
elastic boundary conditions for a double-kink 
would be available in both regimbs. Methods are 
therefore available to perform atomic calculations 
in both the two- and three-dimensional cases and 
to fully define crack motion by kink nucleation 
and growth. 

The results of Table Ill suggest thai, except for 
the most refined calculations or the lowest crack 
extension forces, a simple approximation would 
suffice for the elastic field of the double-crack 
kink. The simple results of Equations 8 and 9, and 
the simple representation of the configuration as 
a dislocation pile-up, continuum or discrete, with 
a double jog in a leading discrete dislocation is 
seen to give a good approximation for both z~ and 
W*. This simple approximation could also be used 
in atomic calculations. 

We emphasize that all of the results here 
presented are for critical-sized nuclei and apply 
for crack growth where the nucleation and growth, 
double&ink mechanism applies. The results would 
not apply for widely-spaced kinks at thermal 
equilibrium, for example, on an unstressed crack- 
tip. There the number of extra jog-pairs needed 
to describe the kinks would be greater because of 
the delocalization of the kink-kink interaction 
energy. As one indication of this trend, all sub- 
dislocations in the pile-up array must acquire 
sufficient jog-pairs to advance by a distance h as 
Zl ~ oo and the entire pile-up adjusts to its new 
unkinked equilibrium position. 
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7. Conclusions 
A double-kink at a crack tip can be represented 
by a pile-up of  dislocations containing a set of  
double jogs. At low crack-extension forces and for 
narrow jogs a specific prediction of  the activation 
energy for double-kink formation is presented, 
completing the theory for crack growth by double- 
kink nucleation and growth [7 -10 ] .  For a double- 
kink in a crack, the equilibrium double-jog array 
provides the corresponding elastic field which can 
be used for boundary conditions in atomic calcu- 
lations. The results also apply directly to the 
advance of a climb pile-up of  real dislocations by 
double-jog nucleation and growth. 
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Appendix: Calculation of the double-ended 
dislocation pile-up configuration 

There are a number of methods of  calculating pile- 
up configurations, as reviewed by Chou and Li 
[39]. A new computational method has been 
developed which considerably simplifies numerical 
calculations. For our case of  a pile-up of  sub- 
dislocations, the equilibrium configuration is 
determined by the force balance between the 
applied force oyyb/m and the dislocation inter- 
action force. 

pb 1 E x 1 + 
oyy = 27r(1--v) m i , i§  i - - x k  x i 

1 1 1 }  
+ - - q  +a/2 , (A1) 2mxk a/2 --xt, + xk 

where],  k = 1, 2 , . . .  ( N - -  1)m. 
Here Equation A1 is a set of  ( N - - 1 ) m  non- 

linear equations, which guarantee a net zero force 
on each sub-dislocation at xl,. By symmetry, the 
force at the centre point of  the double-ended pile- 
up is zero; therefore, the applied stress may be 
found, provided that N and m are known, from 
Equation A1, which, for xk = 0 reduces to 

1,.121 
a , ,  ( I - - u )  ~ ~ f +  . (A2) 

The discrete Equation A1 can be transformed into 
an integral equation by using the properties of  the 
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Dirac delta-function, i.e., f 8 (x- -x ' ) f (x ' )  dx' = 
f(x),  so that 

__ ~ s a,2 p(X) ~.___ (A3) 
oyy 2rr(1-v)m - a n x - - x ~  ' 

where p(x) is the dislocation distribution function 
defined by 

(N-  1)m 

a(x) = Y [5(x - x A - 5 ( x  +xj)] 
J 

+ m [6(x --a/2) -- 6(x + a/Z)]. (A4) 

If x k in Equat ionA3 is assumed to be con- 
tinuous in the interval of  ( - -a /2 ,  a/2), instead 
of  representing discrete dislocation positions, 
Equation A3 can be replaced approximately by 
Equation A5 

t.tb fan n(~') d~' 
~  2rr(1--u)m J-a/; ~---~ ; 

a a 
for --~-~< ~ ~<~-, (n5)  

where n(~') is defined as a smeared dislocation 
density function. Equation A5 is known as the 
Hilbert transform of  n(~') and its solution is 

n(~') - 2(1 -- v)rnoyy ~' 
7 [ [(a/2)2 Z ~'2] 1/2 ] " 

(A6) 

The relation between the applied stress and the 
length of  the pile-ups (or the crack-length a) is 
found from a condition of  conservation of  the 
number of  equivalent dislocations, i.e., 

f 
a / 2  t 

o n(~ ) d~' = N m  (A7) 

TABLE AI 
for the case 
crack-tip and 
(0, b/lO, 0) in 

Equilibrium positions xj, in units of a/2, 
of the leading perfect dislocation at the 
50 sub-dislocations with Burgers vector 

the half-crack region 

1.000 000 0.991 313 0.987 788 0.984 146 
0.980 273 0.976 132 0.971 701 0.966 968 
0.961 925 0.956 562 0.950 873 0.944 85 
0.93848 0.93177 0.924704 0.917269 
0.909 45 0.901 26 0.892 67 0.883 672 
0.874 268 0.864 42 0.851 42 0.843 37 
0.832 135 0.820 397 0.808 13 0.795 33 
0.781 95 0.767 978 0.753 366 0.738 08 
0.722 09 0.705 34 0.687 775 0.669 335 
0.649 94 0.629 52 0.607 97 0.585 170 
0.560964 0.53517 0.50757 0.47785 
0.445 623 0.410 320 0.371 12 0.326 76 
0.27497 0.211 110 0.121 404 



and the  result  is 

N~b 
(A8)  o ~ -  (1-v)a 

The a p p r o x i m a t e d  equ i l ib r ium c o n f i g u r a t i o n  o f  

the  sub-d is loca t ions  in the  pile-up can  be  stat is t i -  

cally d e t e r m i n e d  f rom the  smeared d is locat ion-  

dens i ty  f u n c t i o n  n (~ ' )  as fol lows:  

~ ~2(N- 1)m 
12 -- J o  n ( ~ ' ) d ~ '  

= N m  1 - -  1 -af 

f s  
1 = J e ( N - 1 ) m  n(~' )  d~' 

= Arm a2 

2 1 = n(~')  d~' 
./+1 

- a 2 !  -a2/ 1, 
( A 9 )  

where  ffj d e n o t e  the  a p p r o x i m a t e d  equ i l ib r ium 

conf igura t ions .  I f  we take  the  sum of  the  above  

( N -  1)m - - ]  equa t i ons  c o u n t e d  f rom the  t o p  and  

t h e n  s impl i fy ,  we have  the  so lu t ion  for  ~j ,  

a 
x1 - 2Nm [(Nm)2 - - ( m  + ]  + 0.5)2]  1/2. 

( A 1 0 )  

The  exact  pos i t ions  xj  are t h e n  d e t e r m i n e d  for  

E q u a t i o n A l  b y  the  N e w t o n - R a p h s o n  m e t h o d  

using ~j  as the  first es t imate .  Convergence  was 

qu i te  rapid ,  four  to  five i t e ra t ions ,  because  the  

~j were close to  the  f inal  equ i l ib r ium pos i t ions  xj .  

The  values o f  xj  for  the  case N =  6, m -- 10 are 

s h o w n  in Table  A1.  
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